This is a reference post for using Latex based on Mathjax. This will updated regularly. Please check the commit date for more accurate publishing time.
This post inspired by this
HELLLOOOOOO
Basic Operation
Form |
Syntax |
Description |
$a$ |
a |
symbol declaration |
$a_1$ |
a_1 |
subscript |
$a^2$ |
a^2 |
superscript |
$a^2_1$ |
a^2_1 |
subscript and superscript |
$a^20_1$ |
a^20_1 |
non Grouping |
$a^{20}_1$ |
a^{20}_1 |
Grouping |
$\frac{\sqrt[3] x^3}{y}$ |
\frac{\sqrt x^3}{y} |
Fraction and root |
$(\frac{\sqrt x^3}{y})$ |
(\frac{\sqrt x^3}{y}) |
Unadjusted bracket size |
$\left(\frac{\sqrt x^3}{y} \right)$ |
$\left(\frac{\sqrt x^3}{y} \right) |
Adjusted Bracket Size |
Symbols and Notations
Form |
Syntax |
Description |
$\lt \le \leq \leqq \leqslant$ |
\lt \le \leq \leqq \leqslant |
Less than comparator |
$\gt \ge \geq \geqq \geqslant$ |
\gt \ge \geq \geqq \geqslant |
greater than comparator |
$= \neq \times \div \pm \mp $ |
= \neq \times \div \pm \mp |
operator |
$\cup \cap \setminus \subset \subseteq \subsetneq \supset \in \notin$ |
\cup \cap \setminus \subset \subseteq \subsetneq \supset \in \notin |
set operation |
$\land \lor \lnot \forall \exists \top \bot \vdash \vDash$ |
\land \lor \lnot \forall \exists \top \bot \vdash \vDash |
set quantifier |
$\to \rightarrow \leftarrow \Rightarrow \Leftarrow \mapsto$ |
\to \rightarrow \leftarrow \Rightarrow \Leftarrow \mapsto |
arrow |
$\approx \sim \simeq \cong \equiv \prec \lhd \therefore$ |
\approx \sim \simeq \cong \equiv \prec \lhd \therefore |
relation |
$\cdots \ldots$ |
\cdots \ldots |
cdots is centered whereas ldots is lowered |
$\infty \aleph_0 \nabla \partial \Im \Re$ |
\infty \aleph_0 \nabla \partial \Im \Re |
special symbol |
Spacing
Form |
Syntax |
$a\,b$ |
a\,b |
$a\;b$ |
a\;b |
$a\quad b$ |
a\quad b |
$a\qquad b$ |
a\qquad b |
Character Accent
Form |
Syntax |
$\check{a}$ |
\check{a} |
$\acute{a}$ |
\acute{a} |
$\grave{a}$ |
\grave{a} |
$\vec{a}$ |
\vec{a} |
$\bar{a}$ |
\bar{a} |
$\hat{a}$ |
\hat{a} |
$\tilde{a}$ |
\tilde{a} |
$\dot{a} \ddot{a} \dddot{a}$ |
\dot{a} \ddot{a} \dddot{a} |
Greek Letter
Form |
Syntax |
$\alpha$ |
\alpha |
$\beta$ |
\beta, \Beta |
$\gamma,\Gamma$ |
\gamma, \Gamma |
$\delta,\Delta$ |
\delta, \Delta |
$\epsilon,\varepsilon$ |
\epsilon, \varepsilon |
$\zeta$ |
\zeta |
$\theta,\Theta,\vartheta$ |
\theta,\Theta,\vartheta |
$\kappa$ |
\kappa |
$\lambda,\Lambda$ |
\lambda, \Lambda |
$\mu$ |
\mu |
$\nu$ |
\nu |
$\xi,\Xi$ |
\xi, \Xi |
$\pi,\Pi,\varpi$ |
\pi, \Pi, \varpi |
$\rho,\varrho$ |
\rho, \varrho |
$\sigma,\Sigma,\varsigma$ |
\sigma, \Sigma, \varsigma |
$\tau$ |
\tau |
$\upsilon,\Upsilon$ |
\upsilon, \Upsilon |
$\phi,\Phi,\varphi$ |
\phi, \Phi, \varphi |
$\chi$ |
\chi |
$\psi,\Psi$ |
\psi, \Psi |
$\omega,\Omega$ |
\omega, \Omega |
Operator
Form |
Syntax |
Description |
$\sum$ |
\sum |
summation |
$\sum_i^\infty$ |
\sum_i^\infty |
summation with bound |
$\sum_{i=1}^\infty{\frac{1}{i^2}}$ |
$\sum_{i=1}^\infty{\frac{1}{i^2}} |
complete summation with a group |
$\int$ |
\int |
integral |
$\int_i^\infty$ |
int_i^\infty |
integral with bound |
$\int_{i=1}^\infty{\frac{1}{i^2}}$ |
$\int_{i=1}^\infty{\frac{1}{i^2}} |
complete integral with a group |
$\bigcup$ |
\bigcup |
Union |
$\bigcap$ |
\bigcap |
Intersect |
$\iint$ |
\iint |
double integral |
$\iiint$ |
\iiint |
triple integral |
$\idotsint$ |
\idotsint |
multiple integral |
Matrices
$$
\begin{matrix}
1 & x & y^2 \\
1 & x & y^2 \\
1 & x & y^2 \\
\end{matrix}
$$
syntax
$$
\begin{matrix}
1 & x & y^2 \\
1 & x & y^2 \\
1 & x & y^2 \\
\end{matrix}
$$
\[\begin{pmatrix}
1 & x \\
x & 1 \\
\end{pmatrix}
\begin{bmatrix}
1 & x \\
x & 1 \\
\end{bmatrix}
\begin{Bmatrix}
1 & x \\
x & 1 \\
\end{Bmatrix}
\begin{vmatrix}
1 & x \\
x & 1 \\
\end{vmatrix}
\begin{Vmatrix}
1 & x \\
x & 1 \\
\end{Vmatrix}
\left\langle
\begin{matrix}
1 & x \\
x & 1 \\
\end{matrix}
\right\rangle\]
syntax
$$
\begin{pmatrix}
1 & x \\
x & 1 \\
\end{pmatrix}
\begin{bmatrix}
1 & x \\
x & 1 \\
\end{bmatrix}
\begin{Bmatrix}
1 & x \\
x & 1 \\
\end{Bmatrix}
\begin{vmatrix}
1 & x \\
x & 1 \\
\end{vmatrix}
\begin{Vmatrix}
1 & x \\
x & 1 \\
\end{Vmatrix}
\left\langle
\begin{matrix}
1 & x \\
x & 1 \\
\end{matrix}
\right\rangle
$$
Coupled Equation
\[\begin{cases}
a_1x + b_1y = d_1 \\
a_2x + b_2y = d_3
\end{cases}\]
syntax
$$
\begin{cases}
a_1x + b_1y = d_1 \\
a_2x + b_2y = d_3
\end{cases}
$$
\[\begin{align}
\sqrt{37} & = \sqrt{\frac{73^2-1}{12^2}} \\
& = \sqrt{\frac{73^2}{12^2}\cdot\frac{73^2-1}{73^2}}
\end{align}\]
$$
\begin{align}
\sqrt{37} & = \sqrt{\frac{73^2-1}{12^2}} \\
& = \sqrt{\frac{73^2}{12^2}\cdot\frac{73^2-1}{73^2}}
\end{align}
$$