Math Post Reference

30 Apr 2015 |

This is a reference post for using Latex based on Mathjax. This will updated regularly. Please check the commit date for more accurate publishing time. This post inspired by this

HELLLOOOOOO

Basic Operation

Form Syntax Description
$a$ a symbol declaration
$a_1$ a_1 subscript
$a^2$ a^2 superscript
$a^2_1$ a^2_1 subscript and superscript
$a^20_1$ a^20_1 non Grouping
$a^{20}_1$ a^{20}_1 Grouping
$\frac{\sqrt[3] x^3}{y}$ \frac{\sqrt x^3}{y} Fraction and root
$(\frac{\sqrt x^3}{y})$ (\frac{\sqrt x^3}{y}) Unadjusted bracket size
$\left(\frac{\sqrt x^3}{y} \right)$ $\left(\frac{\sqrt x^3}{y} \right) Adjusted Bracket Size

Symbols and Notations

Form Syntax Description
$\lt \le \leq \leqq \leqslant$ \lt \le \leq \leqq \leqslant Less than comparator
$\gt \ge \geq \geqq \geqslant$ \gt \ge \geq \geqq \geqslant greater than comparator
$= \neq \times \div \pm \mp $ = \neq \times \div \pm \mp operator
$\cup \cap \setminus \subset \subseteq \subsetneq \supset \in \notin$ \cup \cap \setminus \subset \subseteq \subsetneq \supset \in \notin set operation
$\land \lor \lnot \forall \exists \top \bot \vdash \vDash$ \land \lor \lnot \forall \exists \top \bot \vdash \vDash set quantifier
$\to \rightarrow \leftarrow \Rightarrow \Leftarrow \mapsto$ \to \rightarrow \leftarrow \Rightarrow \Leftarrow \mapsto arrow
$\approx \sim \simeq \cong \equiv \prec \lhd \therefore$ \approx \sim \simeq \cong \equiv \prec \lhd \therefore relation
$\cdots \ldots$ \cdots \ldots cdots is centered whereas ldots is lowered
$\infty \aleph_0 \nabla \partial \Im \Re$ \infty \aleph_0 \nabla \partial \Im \Re special symbol

Spacing

Form Syntax
$a\,b$ a\,b
$a\;b$ a\;b
$a\quad b$ a\quad b
$a\qquad b$ a\qquad b

Character Accent

Form Syntax
$\check{a}$ \check{a}
$\acute{a}$ \acute{a}
$\grave{a}$ \grave{a}
$\vec{a}$ \vec{a}
$\bar{a}$ \bar{a}
$\hat{a}$ \hat{a}
$\tilde{a}$ \tilde{a}
$\dot{a} \ddot{a} \dddot{a}$ \dot{a} \ddot{a} \dddot{a}

Greek Letter

Form Syntax
$\alpha$ \alpha
$\beta$ \beta, \Beta
$\gamma,\Gamma$ \gamma, \Gamma
$\delta,\Delta$ \delta, \Delta
$\epsilon,\varepsilon$ \epsilon, \varepsilon
$\zeta$ \zeta
$\theta,\Theta,\vartheta$ \theta,\Theta,\vartheta
$\kappa$ \kappa
$\lambda,\Lambda$ \lambda, \Lambda
$\mu$ \mu
$\nu$ \nu
$\xi,\Xi$ \xi, \Xi
$\pi,\Pi,\varpi$ \pi, \Pi, \varpi
$\rho,\varrho$ \rho, \varrho
$\sigma,\Sigma,\varsigma$ \sigma, \Sigma, \varsigma
$\tau$ \tau
$\upsilon,\Upsilon$ \upsilon, \Upsilon
$\phi,\Phi,\varphi$ \phi, \Phi, \varphi
$\chi$ \chi
$\psi,\Psi$ \psi, \Psi
$\omega,\Omega$ \omega, \Omega

Operator

Form Syntax Description
$\sum$ \sum summation
$\sum_i^\infty$ \sum_i^\infty summation with bound
$\sum_{i=1}^\infty{\frac{1}{i^2}}$ $\sum_{i=1}^\infty{\frac{1}{i^2}} complete summation with a group
$\int$ \int integral
$\int_i^\infty$ int_i^\infty integral with bound
$\int_{i=1}^\infty{\frac{1}{i^2}}$ $\int_{i=1}^\infty{\frac{1}{i^2}} complete integral with a group
$\bigcup$ \bigcup Union
$\bigcap$ \bigcap Intersect
$\iint$ \iint double integral
$\iiint$ \iiint triple integral
$\idotsint$ \idotsint multiple integral

Matrices

$$ \begin{matrix} 1 & x & y^2 \\ 1 & x & y^2 \\ 1 & x & y^2 \\ \end{matrix} $$

syntax

$$
	\begin{matrix}
		1 & x & y^2 \\
		1 & x & y^2 \\
		1 & x & y^2 \\
	\end{matrix}
$$
\[\begin{pmatrix} 1 & x \\ x & 1 \\ \end{pmatrix} \begin{bmatrix} 1 & x \\ x & 1 \\ \end{bmatrix} \begin{Bmatrix} 1 & x \\ x & 1 \\ \end{Bmatrix} \begin{vmatrix} 1 & x \\ x & 1 \\ \end{vmatrix} \begin{Vmatrix} 1 & x \\ x & 1 \\ \end{Vmatrix} \left\langle \begin{matrix} 1 & x \\ x & 1 \\ \end{matrix} \right\rangle\]

syntax

$$
	\begin{pmatrix}
		1 & x \\
		x & 1 \\
	\end{pmatrix}
	\begin{bmatrix}
		1 & x \\
		x & 1 \\
	\end{bmatrix}
	\begin{Bmatrix}
		1 & x \\
		x & 1 \\
	\end{Bmatrix}

	\begin{vmatrix}
		1 & x \\
		x & 1 \\
	\end{vmatrix}
	\begin{Vmatrix}
		1 & x \\
		x & 1 \\
	\end{Vmatrix}
	\left\langle
	\begin{matrix}
		1 & x \\
		x & 1 \\
	\end{matrix}
	\right\rangle
$$

Coupled Equation

\[\begin{cases} a_1x + b_1y = d_1 \\ a_2x + b_2y = d_3 \end{cases}\]

syntax

$$
\begin{cases}
	a_1x + b_1y = d_1 \\
	a_2x + b_2y = d_3
\end{cases}
$$
\[\begin{align} \sqrt{37} & = \sqrt{\frac{73^2-1}{12^2}} \\ & = \sqrt{\frac{73^2}{12^2}\cdot\frac{73^2-1}{73^2}} \end{align}\]
$$
\begin{align}
\sqrt{37} & = \sqrt{\frac{73^2-1}{12^2}} \\
	  & = \sqrt{\frac{73^2}{12^2}\cdot\frac{73^2-1}{73^2}}
\end{align}
$$