This is a reference post for using Latex based on Mathjax. This will updated regularly. Please check the commit date for more accurate publishing time.
This post inspired by this
HELLLOOOOOO
Basic Operation
| Form |
Syntax |
Description |
| $a$ |
a |
symbol declaration |
| $a_1$ |
a_1 |
subscript |
| $a^2$ |
a^2 |
superscript |
| $a^2_1$ |
a^2_1 |
subscript and superscript |
| $a^20_1$ |
a^20_1 |
non Grouping |
| $a^{20}_1$ |
a^{20}_1 |
Grouping |
| $\frac{\sqrt[3] x^3}{y}$ |
\frac{\sqrt x^3}{y} |
Fraction and root |
| $(\frac{\sqrt x^3}{y})$ |
(\frac{\sqrt x^3}{y}) |
Unadjusted bracket size |
| $\left(\frac{\sqrt x^3}{y} \right)$ |
$\left(\frac{\sqrt x^3}{y} \right) |
Adjusted Bracket Size |
Symbols and Notations
| Form |
Syntax |
Description |
| $\lt \le \leq \leqq \leqslant$ |
\lt \le \leq \leqq \leqslant |
Less than comparator |
| $\gt \ge \geq \geqq \geqslant$ |
\gt \ge \geq \geqq \geqslant |
greater than comparator |
| $= \neq \times \div \pm \mp $ |
= \neq \times \div \pm \mp |
operator |
| $\cup \cap \setminus \subset \subseteq \subsetneq \supset \in \notin$ |
\cup \cap \setminus \subset \subseteq \subsetneq \supset \in \notin |
set operation |
| $\land \lor \lnot \forall \exists \top \bot \vdash \vDash$ |
\land \lor \lnot \forall \exists \top \bot \vdash \vDash |
set quantifier |
| $\to \rightarrow \leftarrow \Rightarrow \Leftarrow \mapsto$ |
\to \rightarrow \leftarrow \Rightarrow \Leftarrow \mapsto |
arrow |
| $\approx \sim \simeq \cong \equiv \prec \lhd \therefore$ |
\approx \sim \simeq \cong \equiv \prec \lhd \therefore |
relation |
| $\cdots \ldots$ |
\cdots \ldots |
cdots is centered whereas ldots is lowered |
| $\infty \aleph_0 \nabla \partial \Im \Re$ |
\infty \aleph_0 \nabla \partial \Im \Re |
special symbol |
Spacing
| Form |
Syntax |
| $a\,b$ |
a\,b |
| $a\;b$ |
a\;b |
| $a\quad b$ |
a\quad b |
| $a\qquad b$ |
a\qquad b |
Character Accent
| Form |
Syntax |
| $\check{a}$ |
\check{a} |
| $\acute{a}$ |
\acute{a} |
| $\grave{a}$ |
\grave{a} |
| $\vec{a}$ |
\vec{a} |
| $\bar{a}$ |
\bar{a} |
| $\hat{a}$ |
\hat{a} |
| $\tilde{a}$ |
\tilde{a} |
| $\dot{a} \ddot{a} \dddot{a}$ |
\dot{a} \ddot{a} \dddot{a} |
Greek Letter
| Form |
Syntax |
| $\alpha$ |
\alpha |
| $\beta$ |
\beta, \Beta |
| $\gamma,\Gamma$ |
\gamma, \Gamma |
| $\delta,\Delta$ |
\delta, \Delta |
| $\epsilon,\varepsilon$ |
\epsilon, \varepsilon |
| $\zeta$ |
\zeta |
| $\theta,\Theta,\vartheta$ |
\theta,\Theta,\vartheta |
| $\kappa$ |
\kappa |
| $\lambda,\Lambda$ |
\lambda, \Lambda |
| $\mu$ |
\mu |
| $\nu$ |
\nu |
| $\xi,\Xi$ |
\xi, \Xi |
| $\pi,\Pi,\varpi$ |
\pi, \Pi, \varpi |
| $\rho,\varrho$ |
\rho, \varrho |
| $\sigma,\Sigma,\varsigma$ |
\sigma, \Sigma, \varsigma |
| $\tau$ |
\tau |
| $\upsilon,\Upsilon$ |
\upsilon, \Upsilon |
| $\phi,\Phi,\varphi$ |
\phi, \Phi, \varphi |
| $\chi$ |
\chi |
| $\psi,\Psi$ |
\psi, \Psi |
| $\omega,\Omega$ |
\omega, \Omega |
Operator
| Form |
Syntax |
Description |
| $\sum$ |
\sum |
summation |
| $\sum_i^\infty$ |
\sum_i^\infty |
summation with bound |
| $\sum_{i=1}^\infty{\frac{1}{i^2}}$ |
$\sum_{i=1}^\infty{\frac{1}{i^2}} |
complete summation with a group |
| $\int$ |
\int |
integral |
| $\int_i^\infty$ |
int_i^\infty |
integral with bound |
| $\int_{i=1}^\infty{\frac{1}{i^2}}$ |
$\int_{i=1}^\infty{\frac{1}{i^2}} |
complete integral with a group |
| $\bigcup$ |
\bigcup |
Union |
| $\bigcap$ |
\bigcap |
Intersect |
| $\iint$ |
\iint |
double integral |
| $\iiint$ |
\iiint |
triple integral |
| $\idotsint$ |
\idotsint |
multiple integral |
Matrices
$$
\begin{matrix}
1 & x & y^2 \\
1 & x & y^2 \\
1 & x & y^2 \\
\end{matrix}
$$
syntax
$$
\begin{matrix}
1 & x & y^2 \\
1 & x & y^2 \\
1 & x & y^2 \\
\end{matrix}
$$
\[\begin{pmatrix}
1 & x \\
x & 1 \\
\end{pmatrix}
\begin{bmatrix}
1 & x \\
x & 1 \\
\end{bmatrix}
\begin{Bmatrix}
1 & x \\
x & 1 \\
\end{Bmatrix}
\begin{vmatrix}
1 & x \\
x & 1 \\
\end{vmatrix}
\begin{Vmatrix}
1 & x \\
x & 1 \\
\end{Vmatrix}
\left\langle
\begin{matrix}
1 & x \\
x & 1 \\
\end{matrix}
\right\rangle\]
syntax
$$
\begin{pmatrix}
1 & x \\
x & 1 \\
\end{pmatrix}
\begin{bmatrix}
1 & x \\
x & 1 \\
\end{bmatrix}
\begin{Bmatrix}
1 & x \\
x & 1 \\
\end{Bmatrix}
\begin{vmatrix}
1 & x \\
x & 1 \\
\end{vmatrix}
\begin{Vmatrix}
1 & x \\
x & 1 \\
\end{Vmatrix}
\left\langle
\begin{matrix}
1 & x \\
x & 1 \\
\end{matrix}
\right\rangle
$$
Coupled Equation
\[\begin{cases}
a_1x + b_1y = d_1 \\
a_2x + b_2y = d_3
\end{cases}\]
syntax
$$
\begin{cases}
a_1x + b_1y = d_1 \\
a_2x + b_2y = d_3
\end{cases}
$$
\[\begin{align}
\sqrt{37} & = \sqrt{\frac{73^2-1}{12^2}} \\
& = \sqrt{\frac{73^2}{12^2}\cdot\frac{73^2-1}{73^2}}
\end{align}\]
$$
\begin{align}
\sqrt{37} & = \sqrt{\frac{73^2-1}{12^2}} \\
& = \sqrt{\frac{73^2}{12^2}\cdot\frac{73^2-1}{73^2}}
\end{align}
$$